Considering the fuzziness and the randomness of the truss structures at the same time , using the entropy concept , pure fuzzy dynamic structures are given through transforming the probability to fuzziness 摘要考虑桁架结构同时具有模糊性和随机性,利用模糊熵和概率熵的概念,将结构的随机性和模糊性统一为结构的模糊性,将模糊随机结构转化为纯粹的模糊结构。
It has all of the advantages of method of moment and method of weighted residuals such as simple principle , handy calculation , and the effect to structural reaction from randomness of each structural parameter can be gained 它具有加权残值法和矩法两者固有的全部优点,其原理简单、计算简便、且能够获得随机结构系统中每一参数的随机性对结构反应的影响。
By orthogonal polynomial approximation method , we first reduce the random system into its deterministic equivalent one , so the response problem of a random system can be transformed into that of a deterministic system 有关上述gegenbauer多项式方法在随机振动问题中的应用,现有文献中尚未见报道。上述三种方法都可以用于求解随机结构的演变随机均方响应问题。
The feasibility and validity of the method have been proved by the examples of statical analysis , stability problem , dynamical eigenvalue calculation , and dynamical response analysis . the general procedure of statical analysis for beam and plate is programed 文中将这一方法成功地应用于随机结构的静力学分析、稳定性问题、动力特征值求解和动力响应分析之中,对随机梁、板结构编制了静力分析计算通用程序,证明了此法的正确性、有效性。
Then , from the expressions of structural random response of the frequency domain , the computational expressions of the mean value , variance and variation coefficient of the mean square value of the structural displacement and stress response under the stationary random excitation or non - stationary random excitation are developed by means of the random variable ’ s 在此基础上,从随机振动频域分析出发,导出了在平稳或非平稳随机激励下,随机结构的位移响应均方值、应力响应均方值的数字特征计算表达式,通过算例验证了所建模型和所提求解方法的正确性和有效性。