knowledge n. 1.知识;学识,学问。 2.了解,理解;消息。 3.认识。 4.〔古语〕学科。 5.〔古语〕性关系。 book knowledge书本知识。 K- is power. 〔谚语〕知识就是力量。 practical knowledge实际的知识。 secondhand knowledge第二手知识,传授来的知识。 working knowledge of French 法语知识学到能应用的地步。 I have no knowledge of London. 我对伦敦毫无所知。 It is within your knowledge that ... 这是你所知道的。 The knowledge of our victory caused great joy. 我们获得胜利的消息传来,万众欢腾。 perceptual knowledge感性认识。 logical [rational] knowledge理性认识。 the theory of knowledge【哲学】认识论。 branches of knowledge学科。 carnal knowledge性经验;【法律】性关系。 come to sb.'s knowledge被某人知道。 common [general] knowledge众所周知,常识。 grow out of (sb.'s) knowledge被忘掉了。 have some [a general, a thorough] knowledge of 懂得一点,懂得一个大概,精通。 not to my knowledge我知道并不是那样。 out of all knowledge(变得)认不出来,无法辨认。 to my knowledge据我知道。 to sb.'s certain knowledge据某人确知。 to the best of my knowledge据我所知,就我所知而论(=so far as I know)。 Too much knowledge makes the head bald. 〔谚语〕知识太多老得快。 without sb.'s knowledge 不通知某人,背着某人。
Five criteria are used to assess wisdom - related knowledge : ( a ) rich factual knowledge about the fundamental pragmatics of life ; ( b ) rich procedural knowledge about dealing with the fundamental life matters ; ( c ) life - span contextualism : understanding of life contexts and their developmental relations ; ( d ) value - relativism : knowledge about the differences in values and life goals ; and ( e ) uncertainty : knowledge about the relative uncertainty of life and its management 本研究采用柏林智慧范式的理论与研究程序,对我国成年人的生活规划能力进行评价。研究的主要目的在于:探讨柏林智慧范式在中国文化下的适用程度;比较不同年龄阶段的成年人智慧行为(实际生活规划能力)的差异;并且就相关的研究结论作出跨文化比较。
Solving maths problems is a creative maths thinking activity . in this process , the leading function of meta - cognition knowledge of maths is presented on its controlling procedural knowledge , directing and supporting contextual knowledge , gathering evaluation knowledge and adjusting meta - cognition experience . through the questionnaire of maths meat - cognition for students , the author finds that students " maths meta - cognition capability can be improved 数学问题解决是创造性的数学思维活动,在数学问题解决过程中,数学元认知知识的统摄作用表现在程序性知识的控制作用、情境性知识的引导和支持作用、评价性知识的收敛作用、数学核心思想的调控作用、数学思维模式的规范作用、策略性知识的启发作用;数学元认知体验的调节作用表现在修正目标、改组数学元认知知识和激活策略;数学元认知的监控作用表现在定向、控制、调节。
This thesis contributes in the following aspects : building an its system model called nki - tutor . the conventional systems contain 5 aspects : student model , pedagogical module , domain knowledge , communication module and expert model . however , the system ought to offer some simulation tools to help users to realize the procedural knowledge and strategic knowledge in the interactive learning environment Nki - tutor系统模型包括七个模块:教学模型、学生模型、知识库、交互模块、专家模型、习题模型和模拟垠十领域小w的跨学科智能教学系统的i叮穴:搁奖工具,是在传统的5个部分,即学生模型、教学模块、教学内容、交互模块以及午家模z ( neck , stern !
If the students have the metacognitive ability , they will change the declarative knowledge into the procedural knowledge , form the right cognitive guidance , and arouse the innovative consciousness and innovative ability . the metacognitive ability also can bring every positive factor of the students and improve the quality of the students 培养学生的元认知能力,不仅有利于学生将陈述性知识转化为程序性知识,有利于学生形成正确的认知导向,有利于学生学习的迁移,有利于启发学生的创新意识、培养创新能力,而且可以调动学生学习的主动性、充分发挥学生的主体作用,促进学生素质的全面提高。
Under the model of index framework , a system of cbid was realized with the algorithms of the membership from fuzzy mathematics and the procedure knowledge cases based on the membership between the historical design cases and new design case . 21 procedural knowledge cases ’ weight was calculated and the weight table of historical cases was build 具体研究工作包括:引入模糊数学隶属度概念,利用历史案例对于新问题的隶属度计算结果作为程序型知识案例提取的标准;完成21个程序型知识案例的权重值划分并制定历史案例权重值量化表。
The present study is done under the guidance of the reading theories of contemporary cognitive psychology . starting with an analysis of the reading process , it aims to provide a factual survey on the differences between declarative knowledge and procedural knowledge and find the main causes of difficulties for professional school students in reading . it is found that declarative knowledge is static , represented by schemata , while procedural knowledge is dynamic , represented by the " if - then " model 本研究拟以当代认知心理学的阅读理论为指导,以英语阅读过程分析为切入口,以中职生(包括职业中专和综合高中的学生)为主要研究对象,对中国学生个体在阅读过程中表现出的在以图式为其综合表征形式的静态性的陈述性知识和以“ if - then ”产生式为其表征形式的动态性的程序性知识方面的差异进行实际调查,了解造成阅读困难的根源所在。
The findings not only show that eliciting mathematical explanation is really helpful to construct declarative knowledge and procedural knowledge , to integrate new and old knowledge , and to generate self - inference and repair students " mental model , but also show that if the teacher provides appropriate intervention , it may have a critical influence on fostering students " understanding 研究结果表明诱导学生数学解释的确有助于促进学生陈述性和程序性知识的建构,有助于促进学生对新旧知识的整合,有助于学生产生自我推论和修复心理模型.同时发现教师提供适当的干预对促进学生理解有重要影响
Procedural knowledge, also known as imperative knowledge, is the knowledge exercised in the performance of some task. See below for the specific meaning of this term in cognitive psychology and intellectual property law.