In this thesis , based on principal component analysis ( pca ) , covariance stationary processes and spectral analysis theory of linear operator , spectral principal component analysis ( spca ) is put forward 在主成分分析的基础上,基于协方差平稳过程理论和线性算子谱分析理论,本文提出了谱主成分分析。
The paper will apply the methods of differential dynamical system and of functional analysis to the study of a series of linear operators and semigroup - nonwandering semigroup in chaotic dynamical system 本文将利用微分动力系统和泛函分析的方法,着重研究混沌动力学中的一类线性算子以及算子半群? ?非游荡算子半群。
In this paper , we use the analytical method . by using the theory of semigroups of linear operators , we study the integrated semigroups of linear operators and their applications to continuous - time markov chains ( ctmcs ) 本文着力于使用分析的方法,以算子半群理论为工具,研究积分算子半群及其在时间连续markov链中的应用。
The study of direct and inverse theorems on the approximation of linear operators to functions in normed linear spaces is an important subject in the approximation theory . it is significant in theory and application 线性算子对赋范线性空间中函数逼近正逆定理的研究是逼近论中重要的研究课题之一,在理论和实际应用上都具有重要的意义。
Let h be an infinite dimensional complex hilbert space , b ( h ] the banach algebra of all bounded linear operators on h , and s ( h ) the space of all symmetric operators on h . let l be a real linear , weakly continuous rank one preserver of s ( h ) 设h是无限维复的hilbert空间, b ( h )为h上的有界线性算子全体组成的banach代数, s ( h )为h上的对称算子全体
Also , by the means of the pattern of matrix and the pattern of linear operator , we characterize the linear operators that strongly preserve nilpotence and that strongly preserve invertibility over antinegative commutative semirings without zero divisors 另外,利用矩阵模式和算子模式等工具,我们在非负无零因子半环上刻画了强保持幂零的线性算子和强保持可逆的线性算子
This dissertation consists of two parts . in part one , the weighted approximation by the linear operators in classical spaces and approximation in orlicz spaces are studied ; in part two , the approximation of multivariate linear operators is discussed 本学位论文分为上下两篇,上篇主要为一元线性算子在经典空间的加权逼近和orlicz空间的逼近:下篇为多元线性算子在经典空间的逼近和加权逼近。
Then the relation of regular operators , bounded operators and linear operators on banach lattices are given , that is lr ( e , f ) lb ( e , f ) l ( e , f ) ; order dual , operator dual and algebra dual are related , i . e . e " c e * c e # 然后给出banach格空问上正则算子,有界算子和线性算子的关系: lve ; f ) of 。 ef ) clp , f ) ;给出了序对偶,算子对偶和代数对偶的关系: e ’ ce ” ce个然后引入赋值映射人证明了j是保格运算的格同态
We study the spectral theory of bounded linear operators and the characterization of ci operators by way of mbekhta ' s subspaces . we find a series of operators which are ci operators by the defination and the characterization of ci operators given by weibang gong in [ 3 ] 利用mbekhta子空间研究一般有界线性算子的谱理论以及描述ci算子的特征;用ci算子的定义和判定方法寻找更广泛的ci算子;同时还讨论了广义逆算子和ci算子及mbekhta子空间的关系。
In this paper we use pointwise modulus of smoothness ( f , t ) to study approximation direct theorem and equivalent theorem for some linear operators and quasi - interpolant operators ; using pointwise modulus we discuss the strong converse inequality on k - functional ; and using a modified weighted k - functional and weighted modulus of smoothness we study approximation with jacobi weight on operator with non - zero first order moments 本文利用点态光滑模_ ( ~ ) ~ ( 2r ) ( f , t )来研究某些线性算子及逆中插式逼近正定理和等价定理;利用点态光滑模讨论其关于k -泛函的强逆不等式;同时利用一种改变的带权k -泛函和带权光滑模研究一阶矩不为零的算子的点态带jacobi权逼近。